Search results for "pressure gradient"

showing 10 items of 18 documents

Pressurized flow electrochromatography with reversed phase capillary columns

1995

Pressurized flow electrochromatography (PEC) is a hybrid of capillary LC and capillary electroendosmotic chromatography (CEC). Both a pressure gradient and an electric field are applied across a packed capillary. The feasability of a simple, easy to handle PEC instrumentation is demonstrated. Home made capillary columns with four different silica-based reversed phase packings have been operated under PEC conditions separating non ionic and ionic low molecular weight analytes. The capillary columns have been characterized with respect to their separation efficiency and selectivity and the results have been compared to those obtained with the purely pressure driven system. An electrochromatog…

Capillary electrochromatographyChromatographyCapillary electrophoresisElectrochromatographyChemistryCapillary actionPhase (matter)Analytical chemistryReversed-phase chromatographyBiochemistryCapacity factorPressure gradientAnalytical ChemistryFresenius' Journal of Analytical Chemistry
researchProduct

Flows and mixing in channels with misaligned superhydrophobic walls.

2014

Aligned superhydrophobic surfaces with the same texture orientation reduce drag in the channel and generate secondary flows transverse to the direction of the applied pressure gradient. Here we show that a transverse shear can be easily generated by using superhydrophobic channels with misaligned textured surfaces. We propose a general theoretical approach to quantify this transverse flow by introducing the concept of an effective shear tensor. To illustrate its use, we present approximate theoretical solutions and Dissipative Particle Dynamics simulations for striped superhydrophobic channels. Our results demonstrate that the transverse shear leads to complex flow patterns, which provide a…

Chemical Physics (physics.chem-ph)Materials scienceDissipative particle dynamicsFluid Dynamics (physics.flu-dyn)Reynolds numberFOS: Physical sciencesPhysics - Fluid DynamicsMechanicsCondensed Matter - Soft Condensed MatterFluid transportVortexPhysics::Fluid DynamicsTransverse planesymbols.namesakeClassical mechanicsShear (geology)DragPhysics - Chemical PhysicssymbolsSoft Condensed Matter (cond-mat.soft)Pressure gradientPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment

2021

AbstractThis study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations among seven state-of-the-art cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas, are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced updraft changes. The models show several c…

Convection[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceBuoyancy010504 meteorology & atmospheric sciencesPerturbation (astronomy)engineering.materialAtmospheric sciences01 natural sciences010305 fluids & plasmasTroposphere13. Climate action0103 physical sciencesConvective cloudengineeringCloud condensation nucleiEnvironmental scienceIntensity (heat transfer)Pressure gradient0105 earth and related environmental sciences
researchProduct

From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring a…

2007

After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrai…

DopamineTortuosityBrain functionWiring transmissionSynaptic TransmissionDiffusionDual probe microdialysisMicrofluorimetrychemistry.chemical_compoundCatecholaminesPressure gradientsVolume transmissionHistofluorescenceLocus coeruleusExtracellular spaceNeurological and mental disordersNeurotransmitterNeuronsNeurotransmitter AgentsGeneral NeuroscienceBrain5-HydroxytryptamineAmygdalamedicine.anatomical_structure5-Hydroxytryptamine; Amygdala; Brain function; Brain uncoupling protein-2; Catecholamines; CA turnover; Clearance; Diffusion; Dopamine; Dorsal raphe; Dual probe microdialysis; Extracellular space; Extrasynaptic receptors; Histofluorescence; Local circuits; Locus coeruleus; Mapping of monoamine neurons; Microdensitometry; Microfluorimetry; Neurological and mental disorders; Noradrenaline; Nucleus accumbens; Pressure gradients; Receptor mosaics; Receptor–receptor interactions; Substantia nigra; Thermal gradients; Tortuosity; Transmitter–receptor mismatches; Volume fraction; Volume transmission; Wiring transmissionClearanceNucleus accumbensCA turnoverLocal circuitsReceptor–receptor interactionsSilver StainingMapping of monoamine neuronsModels NeurologicalNeurotransmissionBiologySerotonergicSubstantia nigramedicineBiological neural networkAnimalsHumansThermal gradientsTransmitter–receptor mismatchesVolume fractionExtrasynaptic receptorsMonoamine neurotransmitterchemistryReceptor mosaicsForebrainNoradrenalineLocus coeruleusBrain uncoupling protein-2Neurology (clinical)NeuronNerve NetMicrodensitometry5-Hydroxytryptamine Amygdala Brain function Brain uncoupling protein-2 Catecholamines CA turnover Clearance DiffusionNeuroscienceDorsal raphe
researchProduct

Non-isothermal mass transfer of ferrocolloids through porous membrane

2011

Abstract The present paper deals with transport properties of ferrofluid nanoparticles in non-isothermal capillary-porous layer. Experiment establishes that the temperature difference, which is applied across the layer, induces a thermoosmotic pressure gradient directed toward increasing temperature. The measurement results are interpreted in a frame of phenomenology of linear irreversible thermodynamics. The transport coefficients are evaluated comparing the measured separation curves with approximate solution of the corresponding mass transfer problem.

FerrofluidMaterials scienceDiffusionMass transferPhenomenological modelThermodynamicsMagnetic nanoparticlesCondensed Matter PhysicsThermophoresisPressure gradientIsothermal processElectronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct

Fouling dynamics in suspension flows

2002

A particle suspension flowing in a channel in which fouling layers are allowed to form on the channel walls is investigated by numerical simulation. A two-dimensional phase diagram with at least four different behaviors is constructed. The fouling is modeled by attachment during collision with the deposits and by detachment caused by large enough hydrodynamic drag. For fixed total number of particles and small Reynolds numbers, the relevant parameters governing the fouling dynamics are the solid volume fraction of the suspension and the detachment drag force threshold. Below a critical curve in this 2D phase space only transient fouling takes place when the suspension is accelerated from re…

Materials scienceFoulingBiophysicsReynolds numberNanotechnologySurfaces and InterfacesGeneral ChemistryMechanicsSuspension (chemistry)symbols.namesakeDragsymbolsDeposition (phase transition)General Materials ScienceSaturation (chemistry)Pressure gradientBiotechnologyNeckingEuropean Physical Journal E: Soft Matter
researchProduct

The Effect of Tomography Imaging Artefacts on Structural Analysis and Numerical Permeability Simulations

2011

Fluid flow phenomena in porous materials can be found in many important processes in nature and in society. In particular, fluid flow through a porous medium contribute to several technological problems, e.g. extraction of oil or gas from porous rocks, spreading of contaminants in fluid-saturated soils and certain separation processes, such as filtration (Torquato, 2001). In paper and wood industry single and multi phase fluid flow properties in porous media play important roles related to manufacturing process and product development. The general laws describing creeping fluid flows are well known. However, a detailed study of fluid flow in porous heterogeneous media is complicated. This i…

Permeability (earth sciences)Materials scienceFlow velocityFluid dynamicsMechanicsTomographyPorosityPorous mediumMicrostructurePressure gradient
researchProduct

Momentum transfer across shear flows in Smoothed Particle Hydrodynamic simulations of galaxy formation

2003

We investigate the evolution of angular momentum in SPH simulations of galaxy formation, paying particular attention to artificial numerical effects. We find that a cold gas disc forming in an ambient hot gas halo receives a strong hydrodynamic torque from the hot gas. By splitting the hydrodynamic force into artificial viscosity and pressure gradients, we find that the angular momentum transport is caused not by the artificial viscosity but by the pressure gradients. Using simple test simulations of shear flows, we conclude that the pressure gradient-based viscosity can be divided into two components: one due to the noisiness of SPH and the other to ram pressure. The former is problematic …

PhysicsAngular momentumStar formationMomentum transferAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMechanicsAstrophysicsRam pressureSpace and Planetary ScienceGalaxy formation and evolutionTorqueHaloAstrophysics::Earth and Planetary AstrophysicsPressure gradientAstrophysics::Galaxy Astrophysics
researchProduct

Fully Developed Mixed Magnetohydrodynamic Convection in a Vertical Square Duct

2008

The fully developed flow of an electrically conducting, internally heated fluid in a vertical square duct under the influence of buoyancy and magnetohydrodynamic forces is studied. The flow being parallel, the governing equations are two-dimensional and linear; an analytical solution exists for temperature, while velocity and electric potential are computed by a finite difference technique under different electric boundary conditions, forced to natural convection intensity ratios and values of the magnetic induction. Limiting values of pressure gradient and mean velocity are determined for the flow to be unidirectional throughout the duct's section; recirculation occurs for intermediate val…

PhysicsConvectionNumerical AnalysisNatural convectionBuoyancyMechanicsengineering.materialCondensed Matter PhysicsPhysics::Fluid DynamicsClassical mechanicsCombined forced and natural convectionFlow conditioningengineeringDuct (flow)Magnetohydrodynamic drivePressure gradientNumerical Heat Transfer, Part A: Applications
researchProduct

Numerical study of the primitive equations in the small viscosity regime

2018

In this paper we study the flow dynamics governed by the primitive equations in the small viscosity regime. We consider an initial setup consisting on two dipolar structures interacting with a no slip boundary at the bottom of the domain. The generated boundary layer is analyzed in terms of the complex singularities of the horizontal pressure gradient and of the vorticity generated at the boundary. The presence of complex singularities is correlated with the appearance of secondary recirculation regions. Two viscosity regimes, with different qualitative properties, can be distinguished in the flow dynamics.

PhysicsSingularity tracking methodApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsPrimitive equationMechanicsSlip (materials science)Vorticity01 natural sciences010305 fluids & plasmasPhysics::Fluid DynamicsBoundary layerDipole0103 physical sciencesPrimitive equationsGravitational singularity0101 mathematicsZero viscosity limitPressure gradient
researchProduct