Search results for "pressure gradient"
showing 10 items of 18 documents
Pressurized flow electrochromatography with reversed phase capillary columns
1995
Pressurized flow electrochromatography (PEC) is a hybrid of capillary LC and capillary electroendosmotic chromatography (CEC). Both a pressure gradient and an electric field are applied across a packed capillary. The feasability of a simple, easy to handle PEC instrumentation is demonstrated. Home made capillary columns with four different silica-based reversed phase packings have been operated under PEC conditions separating non ionic and ionic low molecular weight analytes. The capillary columns have been characterized with respect to their separation efficiency and selectivity and the results have been compared to those obtained with the purely pressure driven system. An electrochromatog…
Flows and mixing in channels with misaligned superhydrophobic walls.
2014
Aligned superhydrophobic surfaces with the same texture orientation reduce drag in the channel and generate secondary flows transverse to the direction of the applied pressure gradient. Here we show that a transverse shear can be easily generated by using superhydrophobic channels with misaligned textured surfaces. We propose a general theoretical approach to quantify this transverse flow by introducing the concept of an effective shear tensor. To illustrate its use, we present approximate theoretical solutions and Dissipative Particle Dynamics simulations for striped superhydrophobic channels. Our results demonstrate that the transverse shear leads to complex flow patterns, which provide a…
Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment
2021
AbstractThis study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations among seven state-of-the-art cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas, are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced updraft changes. The models show several c…
From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring a…
2007
After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrai…
Non-isothermal mass transfer of ferrocolloids through porous membrane
2011
Abstract The present paper deals with transport properties of ferrofluid nanoparticles in non-isothermal capillary-porous layer. Experiment establishes that the temperature difference, which is applied across the layer, induces a thermoosmotic pressure gradient directed toward increasing temperature. The measurement results are interpreted in a frame of phenomenology of linear irreversible thermodynamics. The transport coefficients are evaluated comparing the measured separation curves with approximate solution of the corresponding mass transfer problem.
Fouling dynamics in suspension flows
2002
A particle suspension flowing in a channel in which fouling layers are allowed to form on the channel walls is investigated by numerical simulation. A two-dimensional phase diagram with at least four different behaviors is constructed. The fouling is modeled by attachment during collision with the deposits and by detachment caused by large enough hydrodynamic drag. For fixed total number of particles and small Reynolds numbers, the relevant parameters governing the fouling dynamics are the solid volume fraction of the suspension and the detachment drag force threshold. Below a critical curve in this 2D phase space only transient fouling takes place when the suspension is accelerated from re…
The Effect of Tomography Imaging Artefacts on Structural Analysis and Numerical Permeability Simulations
2011
Fluid flow phenomena in porous materials can be found in many important processes in nature and in society. In particular, fluid flow through a porous medium contribute to several technological problems, e.g. extraction of oil or gas from porous rocks, spreading of contaminants in fluid-saturated soils and certain separation processes, such as filtration (Torquato, 2001). In paper and wood industry single and multi phase fluid flow properties in porous media play important roles related to manufacturing process and product development. The general laws describing creeping fluid flows are well known. However, a detailed study of fluid flow in porous heterogeneous media is complicated. This i…
Momentum transfer across shear flows in Smoothed Particle Hydrodynamic simulations of galaxy formation
2003
We investigate the evolution of angular momentum in SPH simulations of galaxy formation, paying particular attention to artificial numerical effects. We find that a cold gas disc forming in an ambient hot gas halo receives a strong hydrodynamic torque from the hot gas. By splitting the hydrodynamic force into artificial viscosity and pressure gradients, we find that the angular momentum transport is caused not by the artificial viscosity but by the pressure gradients. Using simple test simulations of shear flows, we conclude that the pressure gradient-based viscosity can be divided into two components: one due to the noisiness of SPH and the other to ram pressure. The former is problematic …
Fully Developed Mixed Magnetohydrodynamic Convection in a Vertical Square Duct
2008
The fully developed flow of an electrically conducting, internally heated fluid in a vertical square duct under the influence of buoyancy and magnetohydrodynamic forces is studied. The flow being parallel, the governing equations are two-dimensional and linear; an analytical solution exists for temperature, while velocity and electric potential are computed by a finite difference technique under different electric boundary conditions, forced to natural convection intensity ratios and values of the magnetic induction. Limiting values of pressure gradient and mean velocity are determined for the flow to be unidirectional throughout the duct's section; recirculation occurs for intermediate val…
Numerical study of the primitive equations in the small viscosity regime
2018
In this paper we study the flow dynamics governed by the primitive equations in the small viscosity regime. We consider an initial setup consisting on two dipolar structures interacting with a no slip boundary at the bottom of the domain. The generated boundary layer is analyzed in terms of the complex singularities of the horizontal pressure gradient and of the vorticity generated at the boundary. The presence of complex singularities is correlated with the appearance of secondary recirculation regions. Two viscosity regimes, with different qualitative properties, can be distinguished in the flow dynamics.